Roberto’s Notes on Differential Calculus

Chapter 5: Derivatives of transcendental functions

Section 3

Derivatives of Hyperbolic functions

<table>
<thead>
<tr>
<th>What you need to know already:</th>
<th>What you can learn here:</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Basic rules of differentiation, including the natural exponential rule.</td>
<td>➢ How to differentiate functions involving hyperbolic functions.</td>
</tr>
</tbody>
</table>

I hope you will not be surprised if I tell you that this section is rather short, since the derivatives of hyperbolic functions are few and easy to find.

I am not surprised, but I am delighted! Let’s see them.

Technical fact

The derivatives of the basic hyperbolic functions are as follows:

\[
\begin{align*}
 (\sinh x)' &= \cosh x \\
 (\cosh x)' &= \sinh x \\
 (\tanh x)' &= \text{sech}^2 x
\end{align*}
\]

Proof

Oh, I will not deny you the pleasure of constructing those proofs by yourself. After all, you only need the differentiation rules you have seen so far 😊.

So, off you go to the Learning questions!
Summary

➢ The derivatives of hyperbolic functions can be easily obtained by using their defining formulae and the basic rules of differentiation.

Common errors to avoid

➢ Although the differentiation rules for hyperbolic functions are similar to those of trigonometric functions, they are not exactly the same: do not confuse them!

Learning questions for Section D 5-3

Review questions:

1. Explain why the derivatives of hyperbolic functions are so easy to obtain.

Memory questions:

1. What is the derivative of $y = \sinh x$?
2. What is the derivative of $y = \cosh x$?
3. What is the derivative of $y = \tanh x$?
Computation questions:

Compute the derivative of the functions presented in questions 1-22.

1. \(y = \cosh(\sinh(x)) \)
2. \(y = \frac{\sinh x}{\tanh x} \)
3. \(y = (\cosh^2 x) \sinh x \)
4. \(y = \cosh^2 (\sinh^2 (x)) \)
5. \(f(x) = 3^{\cosh(x)^2+2} \)
6. \(y = \cosh(e^x + \ln x) \)
7. \(y = \frac{\sinh(\ln x)}{\cosh^2(x^2+1)} \)
8. \(y = e^x + \frac{8x}{e^x} - \tanh(3x) \)
9. \(y = e^x \cosh x \)
10. \(y = \tanh \left(\ln \sqrt{\frac{1+x}{1-x}} \right) \)
11. \(f(x) = \log_8 \frac{e^{2x} + x}{x^2 - \sinh x} \).
12. \(f(x) = (2\sqrt{x^2 + 2} - \tanh x) \sin e - \frac{6}{x^3} + 4^x \cos x \)
13. \(y = e^{3x^2} \sinh^3 x + 4 \tanh 2x \)
14. \(y = \frac{\sinh x - \cosh x}{\sinh x + \cosh x} \)
15. \(y = 4x^2 \cosh^3 x + 2 \coth 4x \)
16. \(f(x) = \frac{2\sqrt{x^2 + \ln x} - \tanh x}{8} \)
17. \(f(x) = \log_3 \left(x^2 e^{x^2} \right) + \cosh (x^2 + 4) \)
18. \(f(x) = \frac{2-e^{x^2}}{\cosh \sqrt{x}} \)
19. \(f(x) = \sinh(\cosh 3^x) \)
20. \(f(x) = (\sinh x^2)^x \)
21. \(f(x) = \frac{x^9}{\cosh^8 (1-e^x)} \)
22. \(y = \frac{\cosh^8 (1-e^x)}{x^9} \)

23. Determine the derivative of the function \(y = \frac{\cosh x^2}{e^{x^2}} \) in the following two ways:
 a) By applying appropriate rules to the function as is and simplifying the result algebraically (that is, no need to change the hyperbolic functions).
 b) By rewriting the function in terms of a single exponential and computing the derivative of the resulting form.
24. Find \(dy/dx \) if \(x \cosh y = y + x \)

Theory questions:

1. What is the 100\(^{th} \) derivative of \(f(x) = \cosh 2x \)?
2. What method is used to obtain the derivative of the two basic hyperbolic functions?
3. What is the derivative of \(y = \cosh x \sech x \)?

Proof questions:

1. Prove that \((\sinh x)' = \cosh x \)
2. Prove that \((\cosh x)' = \sinh x \)
3. Prove that \((\tanh x)' = \sech^2 x \)
4. Compute the derivative of the other three main hyperbolic functions: \(y = \sech x, \ y = \csc x, \ y = \coth x \) starting from their formulae in terms of exponential functions.
5. Compute the derivative of the other three main hyperbolic functions: \(y = \sech x, \ y = \csc x, \ y = \coth x \) starting from their formulae in terms of hyperbolic sine and cosine.

Application questions:

For each of the curves presented in question 1-4, determine the equation of the line tangent to it at the given point.

1. \(f(x) = e^{\ln(x^2 + 1) + \cosh x} \) at its \(y \)-intercept
2. \(y = \ln x^2 - \sinh x \) at \((1, -\sinh 1)\).
3. \(f(x) = \frac{\cosh x}{\sinh x - \cosh x} \) at its \(y \)-intercept.
4. \(x \sinh(x) + y \cos y = \ln 4 \) at the point of coordinates \((\ln 2, \ln 2)\).
5. The instantaneous rate of fuel consumption of a car (in the appropriate units) is given by the function \(c(v, a) = 2 + \sinh v + \cosh a \), where \(v \) is the car’s velocity and \(a \) is its acceleration. If the car’s velocity is given by \(v = \frac{t^2}{1+t^2} \).

1) Which function of \(t \) represents the car’s rate of fuel consumption, and is this function differentiable?
2) What is the limiting consumption of the car as \(t \) increases?

Templated questions:

1. Construct a function involving hyperbolic functions, determine its derivative, its tangent line at some point and its higher derivatives, as much as reasonably possible.

What questions do you have for your instructor?